ProactiV : Studying Deep Learning Model Behavior Under Input Transformations
Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training dat...
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 18. Aug., Seite 5651-5665 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |