ProactiV : Studying Deep Learning Model Behavior Under Input Transformations

Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training dat...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 8 vom: 18. Aug., Seite 5651-5665
Auteur principal: Prasad, Vidya (Auteur)
Autres auteurs: van Sloun, Ruud J G, Vilanova, Anna, Pezzotti, Nicola
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM360352316
003 DE-627
005 20250305031645.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3301722  |2 doi 
028 5 2 |a pubmed25n1200.xml 
035 |a (DE-627)NLM360352316 
035 |a (NLM)37535493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prasad, Vidya  |e verfasserin  |4 aut 
245 1 0 |a ProactiV  |b Studying Deep Learning Model Behavior Under Input Transformations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning (DL) models have shown performance benefits across many applications, from classification to image-to-image translation. However, low interpretability often leads to unexpected model behavior once deployed in the real world. Usually, this unexpected behavior is because the training data domain does not reflect the deployment data domain. Identifying a model's breaking points under input conditions and domain shifts, i.e., input transformations, is essential to improve models. Although visual analytics (VA) has shown promise in studying the behavior of model outputs under continually varying inputs, existing methods mainly focus on per-class or instance-level analysis. We aim to generalize beyond classification where classes do not exist and provide a global view of model behavior under co-occurring input transformations. We present a DL model-agnostic VA method (ProactiV) to help model developers proactively study output behavior under input transformations to identify and verify breaking points. ProactiV relies on a proposed input optimization method to determine the changes to a given transformed input to achieve the desired output. The data from this optimization process allows the study of global and local model behavior under input transformations at scale. Additionally, the optimization method provides insights into the input characteristics that result in desired outputs and helps recognize model biases. We highlight how ProactiV effectively supports studying model behavior with example classification and image-to-image translation tasks 
650 4 |a Journal Article 
700 1 |a van Sloun, Ruud J G  |e verfasserin  |4 aut 
700 1 |a Vilanova, Anna  |e verfasserin  |4 aut 
700 1 |a Pezzotti, Nicola  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 8 vom: 18. Aug., Seite 5651-5665  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:8  |g day:18  |g month:08  |g pages:5651-5665 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3301722  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 8  |b 18  |c 08  |h 5651-5665