Forecasting waved daily COVID-19 death count series with a novel combination of segmented Poisson model and ARIMA models

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 50(2023), 11-12 vom: 01., Seite 2561-2574
Auteur principal: Zhang, Xiaolei (Auteur)
Autres auteurs: Ma, Renjun
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Coronavirus disease incidence infectious diseases prevalence time series
LEADER 01000caa a22002652c 4500
001 NLM360293301
003 DE-627
005 20250305030748.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1976119  |2 doi 
028 5 2 |a pubmed25n1200.xml 
035 |a (DE-627)NLM360293301 
035 |a (NLM)37529559 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiaolei  |e verfasserin  |4 aut 
245 1 0 |a Forecasting waved daily COVID-19 death count series with a novel combination of segmented Poisson model and ARIMA models 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.09.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Autoregressive Integrated Moving Average (ARIMA) models have been widely used to forecast and model the development of various infectious diseases including COVID-19 outbreaks; however, such use of ARIMA models does not respect the count nature of the pandemic development data. For example, the daily COVID-19 death count series data for Canada and the United States (USA) are generally skewed with lots of low counts. In addition, there are generally waved patterns with turning points influenced by government major interventions against the spread of COVID-19 during different periods and seasons. In this study, we propose a novel combination of the segmented Poisson model and ARIMA models to handle these features and correlation structures in a two-stage process. The first stage of this process is a generalization of trend analysis of time series data. Our approach is illustrated with forecasting and modeling of daily COVID-19 death count series data for Canada and the USA 
650 4 |a Journal Article 
650 4 |a Coronavirus disease 
650 4 |a incidence 
650 4 |a infectious diseases 
650 4 |a prevalence 
650 4 |a time series 
700 1 |a Ma, Renjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 11-12 vom: 01., Seite 2561-2574  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:11-12  |g day:01  |g pages:2561-2574 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1976119  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 11-12  |b 01  |h 2561-2574