Preparation and Magnetic Manipulation of Fe3O4/Acrylic Resin Core-Shell Microspheres
Core-shell microspheres refer to duo-layer or multilayer microspheres, which are widely used in drug delivery, microreactors, etc. Accurate manipulation of microspheres is a research hot spot, while traditional manipulation methods including ultrasonic manipulation and laser manipulation still face...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 32 vom: 15. Aug., Seite 11459-11467 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Core-shell microspheres refer to duo-layer or multilayer microspheres, which are widely used in drug delivery, microreactors, etc. Accurate manipulation of microspheres is a research hot spot, while traditional manipulation methods including ultrasonic manipulation and laser manipulation still face some limitations. In this study, magnetic core-shell microspheres were adopted to realize the accurate manipulation of microspheres. Combined with microfluidic technology, polystyrene sulfonic acid (PSSA)/Fe3O4 magnetic fluid was utilized as the core material and photosensitive acrylic resin became the shell material. After UV curing, a magnetic core-shell microsphere with an average size of 55 μm could be achieved, and the diameter was uniform and controllable. By adjusting the flow rate of the dispersed phase, the dual-core microspheres with different core particle sizes that ranged from 9.3 to 28.4 μm could be prepared. Experimental results showed that the prepared Fe3O4/acrylic resin core-shell microspheres can be used as functionalized microspheres that have good magnetic response properties and self-assembly ability. In addition, the magnetic manipulation and self-assembly of the prepared core-shell microspheres were presented with different external magnetic fields. The magnetic core-shell microspheres have shown great potential in the fields of biomedical engineering and targeted delivery of drugs |
---|---|
Beschreibung: | Date Revised 15.08.2023 published: Print-Electronic Citation Status Publisher |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c01474 |