Tuning Ligands Ratio Allows for Controlling Gold Nanocluster Conformation and Activating a Nonantimicrobial Thiol Fragrance for Effective Treatment of MRSA-Induced Keratitis

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 40 vom: 29. Okt., Seite e2303562
1. Verfasser: Pang, Zeyang (VerfasserIn)
Weitere Verfasser: Ren, Ning, Wu, Yujie, Qi, Jie, Hu, Fupin, Guo, Yuan, Xie, Yangzhouyun, Zhou, Dejian, Jiang, Xingyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antibiotic resistance bacterial keratitis gold nanoclusters ocular therapeutics thiol fragrance zwitterion ligands
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Bacterial keratitis is a serious ocular disease that affects millions of people worldwide each year, among which ≈25% are caused by Staphylococcus aureus. With the spread of bacterial resistance, refractory keratitis caused by methicillin-resistant S. aureus (MRSA) affects ≈120 000-190 000 people annually and is a significant cause of infectious blindness. Atomically precise gold nanoclusters (GNCs) recently emerged as promising antibacterial agents; although how the GNC structure and capping ligands control the antibacterial properties remains largely unexplored. In this study, by adjusting the ratio of a "bulky" thiol fragrance to a linear zwitterionic ligand, the GNC conformation is transformed from Au25 (SR)18 to Au23 (SR)16 species, simultaneously converting both inactive thiol ligands into potent antibacterial nanomaterials. Surprisingly, mixed-ligand capped Au23 (SR)16 GNCs exhibit superior antibacterial potency compared to their monoligand counterparts. The optimal GNC is highly potent against MRSA, showing >1024-fold lower minimum inhibitory concentration than the corresponding free ligands. Moreover, it displays excellent potency in treating MRSA-induced keratitis in mice with greatly accelerated corneal recovery (by approximately ninefold). Thus, this study establishes a feasible method to synthesize antibacterial GNCs by adjusting the ligand ratio to control GNC conformation and active non-antibacterial ligands, thereby greatly increasing the repertoires for combating multidrug-resistant bacterial infections
Beschreibung:Date Revised 04.10.2023
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202303562