Humidity/Oxygen-Insensitive Organic Synaptic Transistors Based on Optical Radical Effect

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 1 vom: 09. Jan., Seite e2305370
1. Verfasser: Liu, Dapeng (VerfasserIn)
Weitere Verfasser: Zhang, Junyao, Shi, Qianqian, Sun, Tongrui, Xu, Yutong, Li, Li, Tian, Li, Xiong, Lize, Zhang, Jianhua, Huang, Jia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article durability radical effect stability synaptic transistors
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
For most organic synaptic transistors based on the charge trapping effect, different atmosphere conditions lead to significantly different device performance. Some devices even lose the synaptic responses under vacuum or inert atmosphere. The stable device performance of these organic synaptic transistors under varied working environments with different humidity and oxygen levels can be a challenge. Herein, a moisture- and oxygen-insensitive organic synaptic device based on the organic semiconductor and photoinitiator molecules is reported. Unlike the widely reported charge trapping effect, the photoinduced free radical is utilized to realize the photosynaptic performance. The resulting synaptic transistor displays typical excitatory postsynaptic current, paired-pulse facilitation, learning, and forgetting behaviors. Furthermore, the device exhibits decent and stable photosynaptic performances under high humidity and vacuum conditions. This type of organic synaptic device also demonstrates high potential in ultraviolet B perception based on its environmental stability and broad ultraviolet detection capability. Finally, the contrast-enhanced capability of the device is successfully validated by the single-layer-perceptron/double-layer network based Modified National Institute of Standards and Technology pattern recognition. This work could have important implications for the development of next-generation environment-stable organic synaptic devices and systems
Beschreibung:Date Revised 04.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202305370