|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM359598250 |
003 |
DE-627 |
005 |
20231226081223.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c01005
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1198.xml
|
035 |
|
|
|a (DE-627)NLM359598250
|
035 |
|
|
|a (NLM)37459162
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Ting
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Smart Copolymer Surface Derived from Geminized Cationic Amphiphilic Polymers for Reversibly Switchable Bactericidal and Self-Cleaning Abilities
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.08.2023
|
500 |
|
|
|a Date Revised 02.08.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily contaminated, which puts a great limitation on their application. Herein, novel antibacterial copolymer brush surfaces containing geminized cationic amphiphilic polymers (pAGC8) and thermoresponsive poly(N-isopropylacrylamide) polymers (pNIPAm) have been synthesized. Surface functionalization of polymer brushes was investigated by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and water contact angle measurements. A proportion of AGC8 and NIPAm units in copolymer brushes has been adjusted to obtain a high-efficiency bactericidal surface with minimal interference to its self-cleaning property. The killing and releasing efficiency of the optimized surface simultaneously reached up to above 80% for both Staphylococcus aureus and Escherichia coli bacteria, and the bactericidal and self-cleaning abilities are still excellent even after three kill-release cycles. Such a novel copolymer brush system provides innovative guidance for the development of high-efficiency antibacterial materials in biomedical application
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Situ, Chaoyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Haohui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Kuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Lianyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ziyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Jishi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Chongxiong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Haibo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 30 vom: 01. Aug., Seite 10521-10529
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:30
|g day:01
|g month:08
|g pages:10521-10529
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c01005
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 30
|b 01
|c 08
|h 10521-10529
|