Smart Copolymer Surface Derived from Geminized Cationic Amphiphilic Polymers for Reversibly Switchable Bactericidal and Self-Cleaning Abilities
Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily co...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 30 vom: 01. Aug., Seite 10521-10529 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents Polymers |
Zusammenfassung: | Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily contaminated, which puts a great limitation on their application. Herein, novel antibacterial copolymer brush surfaces containing geminized cationic amphiphilic polymers (pAGC8) and thermoresponsive poly(N-isopropylacrylamide) polymers (pNIPAm) have been synthesized. Surface functionalization of polymer brushes was investigated by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and water contact angle measurements. A proportion of AGC8 and NIPAm units in copolymer brushes has been adjusted to obtain a high-efficiency bactericidal surface with minimal interference to its self-cleaning property. The killing and releasing efficiency of the optimized surface simultaneously reached up to above 80% for both Staphylococcus aureus and Escherichia coli bacteria, and the bactericidal and self-cleaning abilities are still excellent even after three kill-release cycles. Such a novel copolymer brush system provides innovative guidance for the development of high-efficiency antibacterial materials in biomedical application |
---|---|
Beschreibung: | Date Completed 02.08.2023 Date Revised 02.08.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.3c01005 |