Self-Supervised Arbitrary-Scale Implicit Point Clouds Upsampling

Point clouds upsampling (PCU), which aims to generate dense and uniform point clouds from the captured sparse input of 3D sensor such as LiDAR, is a practical yet challenging task. It has potential applications in many real-world scenarios, such as autonomous driving, robotics, AR/VR, etc. Deep neur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 10 vom: 01. Okt., Seite 12394-12407
1. Verfasser: Zhao, Wenbo (VerfasserIn)
Weitere Verfasser: Liu, Xianming, Zhai, Deming, Jiang, Junjun, Ji, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM358490642
003 DE-627
005 20231226074843.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3287628  |2 doi 
028 5 2 |a pubmed24n1194.xml 
035 |a (DE-627)NLM358490642 
035 |a (NLM)37347630 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Wenbo  |e verfasserin  |4 aut 
245 1 0 |a Self-Supervised Arbitrary-Scale Implicit Point Clouds Upsampling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point clouds upsampling (PCU), which aims to generate dense and uniform point clouds from the captured sparse input of 3D sensor such as LiDAR, is a practical yet challenging task. It has potential applications in many real-world scenarios, such as autonomous driving, robotics, AR/VR, etc. Deep neural network based methods achieve remarkable success in PCU. However, most existing deep PCU methods either take the end-to-end supervised training, where large amounts of pairs of sparse input and dense ground-truth are required to serve as the supervision; or treat up-scaling of different factors as independent tasks, where multiple networks are required for different scaling factors, leading to significantly increased model complexity and training time. In this article, we propose a novel method that achieves self-supervised and magnification-flexible PCU simultaneously. No longer explicitly learning the mapping between sparse and dense point clouds, we formulate PCU as the task of seeking nearest projection points on the implicit surface for seed points. We then define two implicit neural functions to estimate projection direction and distance respectively, which can be trained by the pretext learning tasks. Moreover, the projection rectification strategy is tailored to remove outliers so as to keep the shape of object clear and sharp. Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than state-of-the-art supervised methods 
650 4 |a Journal Article 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Zhai, Deming  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Ji, Xiangyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 10 vom: 01. Okt., Seite 12394-12407  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:10  |g day:01  |g month:10  |g pages:12394-12407 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3287628  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 10  |b 01  |c 10  |h 12394-12407