Predicting rare events using neural networks and short-trajectory data

Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 488(2023) vom: 01. Sept.
1. Verfasser: Strahan, John (VerfasserIn)
Weitere Verfasser: Finkel, Justin, Dinner, Aaron R, Weare, Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Feynman-Kac equation Holton-Mass model adaptive sampling high-dimensional PDE neural network rare event
LEADER 01000caa a22002652 4500
001 NLM358343844
003 DE-627
005 20240902232534.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2023.112152  |2 doi 
028 5 2 |a pubmed24n1520.xml 
035 |a (DE-627)NLM358343844 
035 |a (NLM)37332834 
035 |a (PII)112152 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Strahan, John  |e verfasserin  |4 aut 
245 1 0 |a Predicting rare events using neural networks and short-trajectory data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes challenging. In such cases a more effective approach is to cast statistics of interest as solutions to Feynman-Kac equations (partial differential equations). Here, we develop an approach to solve Feynman-Kac equations by training neural networks on short-trajectory data. Our approach is based on a Markov approximation but otherwise avoids assumptions about the underlying model and dynamics. This makes it applicable to treating complex computational models and observational data. We illustrate the advantages of our method using a low-dimensional model that facilitates visualization, and this analysis motivates an adaptive sampling strategy that allows on-the-fly identification of and addition of data to regions important for predicting the statistics of interest. Finally, we demonstrate that we can compute accurate statistics for a 75-dimensional model of sudden stratospheric warming. This system provides a stringent test bed for our method 
650 4 |a Journal Article 
650 4 |a Feynman-Kac equation 
650 4 |a Holton-Mass model 
650 4 |a adaptive sampling 
650 4 |a high-dimensional PDE 
650 4 |a neural network 
650 4 |a rare event 
700 1 |a Finkel, Justin  |e verfasserin  |4 aut 
700 1 |a Dinner, Aaron R  |e verfasserin  |4 aut 
700 1 |a Weare, Jonathan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 488(2023) vom: 01. Sept.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:488  |g year:2023  |g day:01  |g month:09 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2023.112152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 488  |j 2023  |b 01  |c 09