Predicting rare events using neural networks and short-trajectory data

Estimating the likelihood, timing, and nature of events is a major goal of modeling stochastic dynamical systems. When the event is rare in comparison with the timescales of simulation and/or measurement needed to resolve the elemental dynamics, accurate prediction from direct observations becomes c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 488(2023) vom: 01. Sept.
1. Verfasser: Strahan, John (VerfasserIn)
Weitere Verfasser: Finkel, Justin, Dinner, Aaron R, Weare, Jonathan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Feynman-Kac equation Holton-Mass model adaptive sampling high-dimensional PDE neural network rare event