Ultrafast Subpicosecond Magnetization of a 2D Ferromagnet
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 40 vom: 01. Okt., Seite e2301347 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D magnetism X-ray free-electron laser ferromagnetic semiconductors ultrafast magnetization wavefunction engineering of magnetization |
Zusammenfassung: | © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. Strong spin-charge interactions in several ferromagnets are expected to lead to subpicosecond (sub-ps) magnetization of the magnetic materials through control of the carrier characteristics via electrical means, which is essential for ultrafast spin-based electronic devices. Thus far, ultrafast control of magnetization has been realized by optically pumping a large number of carriers into the d or f orbitals of a ferromagnet; however, it is extremely challenging to implement by electrical gating. This work demonstrates a new method for sub-ps magnetization manipulation called wavefunction engineering, in which only the spatial distribution (wavefunction) of s (or p) electrons is controlled and no change is required in the total carrier density. Using a ferromagnetic semiconductor (FMS) (In,Fe)As quantum well (QW), instant enhancement, as fast as 600 fs, of the magnetization is observed upon irradiating a femtosecond (fs) laser pulse. Theoretical analysis shows that the instant enhancement of the magnetization is induced when the 2D electron wavefunctions (WFs) in the FMS QW are rapidly moved by a photo-Dember electric field formed by an asymmetric distribution of the photocarriers. Because this WF engineering method can be equivalently implemented by applying a gate electric field, these results open a new way to realize ultrafast magnetic storage and spin-based information processing in present electronic systems |
---|---|
Beschreibung: | Date Revised 20.10.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202301347 |