Immobilization of Laccase by Alkali-Etched Bimetallic CoCu-MOF To Enhance Enzyme Loading and Congo Red Degradation

In this work, the strategy of immobilizing enzymes in bimetallic-organic frameworks was adopted to overcome the disadvantages of free laccases. The surface amino-silanizing of bimetallic CoCu-MOF-H hydrothermally synthesized was performed by (3-Aminopropyl)triethoxysilane (APTES). Then, glutaraldehy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 24 vom: 20. Juni, Seite 8404-8413
1. Verfasser: Long, Hongyang (VerfasserIn)
Weitere Verfasser: Li, Xueping, Liu, Xiaochen, Wang, Wanying, Yang, Xia, Wu, Zhansheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Laccase EC 1.10.3.2 Enzymes, Immobilized Congo Red 3U05FHG59S Alkalies
Beschreibung
Zusammenfassung:In this work, the strategy of immobilizing enzymes in bimetallic-organic frameworks was adopted to overcome the disadvantages of free laccases. The surface amino-silanizing of bimetallic CoCu-MOF-H hydrothermally synthesized was performed by (3-Aminopropyl)triethoxysilane (APTES). Then, glutaraldehyde was used as the cross-linking agent, laccase was covalently grafted onto CoCu-MOF-H-APTES to prepare Lac-CoCu-MOF-H-APTE. In addition, CoCu-MOF-OH also was synthesized by alkali etching of CoCu-MOF-H, and Lac-CoCu-MOF-OH-APTES composites were obtained by a similar strategy. The result showed that the relative enzyme activity of Lac-CoCu-MOF-OH-APTES exhibited 264.02% (1.8 times than that of Lac-CoCu-MOF-H-APTES) after six cycles of stability tests, while the free enzyme was almost inactivated. Moreover, the Congo red (CR) removal rate of Lac-CoCu-MOF-OH-APTES exceeded 95% within 1 h and exceeded 89.18% after six cycles at pH 3.5 and 50 °C. This work has the potential to provide a broader application prospect for CR degradation by laccase in the future
Beschreibung:Date Completed 21.06.2023
Date Revised 26.06.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00362