Sweet potato ADP-glucose pyrophosphorylase small subunit affects vegetative growth, starch content and storage root yield

Copyright © 2023 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 200(2023) vom: 15. Juli, Seite 107796
1. Verfasser: Fan, Weijuan (VerfasserIn)
Weitere Verfasser: Wang, Yuqin, Zhang, Li, Fang, Yijie, Yan, Mengxiao, Yuan, Ling, Yang, Jun, Wang, Hongxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article ADP-glucose pyrophosphorylase ADP-glucose pyrophosphorylase small subunit Starch Storage root yield Sweet potato 9005-25-8 Glucose-1-Phosphate Adenylyltransferase EC 2.7.7.27
Beschreibung
Zusammenfassung:Copyright © 2023 Elsevier Masson SAS. All rights reserved.
The development of storage roots is a key factor determining the yields of crop plants, including sweet potato. Here, using combined bioinformatic and genomic approaches, we identified a sweet potato yield-related gene, ADP-glucose pyrophosphorylase (AGP) small subunit (IbAPS). We found that IbAPS positively affects AGP activity, transitory starch biosynthesis, leaf development, chlorophyll metabolism, and photosynthesis, ultimately affecting the source strength. IbAPS overexpression in sweet potato led to increased vegetative biomass and storage root yield. RNAi of IbAPS resulted in reduced vegetative biomass, accompanied with a slender stature and stunted root development. In addition to the effects on root starch metabolism, we found that IbAPS affects other storage root development-associated events, including lignification, cell expansion, transcriptional regulation, and production of the storage protein sporamins. A combinatorial analysis based on transcriptomes, as well as morphological and physiological data, revealed that IbAPS affects several pathways that determine development of vegetative tissues and storage roots. Our work establishes an important role of IbAPS in concurrent control of carbohydrate metabolism, plant growth, and storage root yield. We showed that upregulation of IbAPS results in superior sweet potato with increased green biomass, starch content, and storage root yield. The findings expand our understanding of the functions of AGP enzymes and advances our ability to increase the yield of sweet potato and, perhaps, other crop plants
Beschreibung:Date Completed 12.06.2023
Date Revised 12.06.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2023.107796