A Photopatternable Conjugated Polymer with Thermal-Annealing-Promoted Interchain Stacking for Highly Stable Anti-Counterfeiting Materials

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 36 vom: 01. Sept., Seite e2303120
1. Verfasser: Liu, Chengwei (VerfasserIn)
Weitere Verfasser: Steppert, Ann-Kathrin, Liu, Yazhi, Weis, Philipp, Hu, Jianyu, Nie, Chen, Xu, Wen-Cong, Kuehne, Alexander J C, Wu, Si
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article annealing anti-counterfeiting conjugated polymers photoresponsive stable
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Photoresponsive polymers can be conveniently used to fabricate anti-counterfeiting materials through photopatterning. However, an unsolved problem is that ambient light and heat can damage anti-counterfeiting patterns on photoresponsive polymers. Herein, photo- and thermostable anti-counterfeiting materials are developed by photopatterning and thermal annealing of a photoresponsive conjugated polymer (MC-Azo). MC-Azo contains alternating azobenzene and fluorene units in the polymer backbone. To prepare an anti-counterfeiting material, an MC-Azo film is irradiated with polarized blue light through a photomask, and then thermally annealed under the pressure of a photonic stamp. This strategy generates a highly secure anti-counterfeiting material with dual patterns, which is stable to sunlight and heat over 200 °C. A key for the stability is that thermal annealing promotes interchain stacking, which converts photoresponsive MC-Azo to a photostable material. Another key for the stability is that the conjugated structure endows MC-Azo with desirable thermal properties. This study shows that the design of photopatternable conjugated polymers with thermal-annealing-promoted interchain stacking provides a new strategy for the development of highly stable and secure anti-counterfeiting materials
Beschreibung:Date Revised 07.09.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202303120