Mechanical Signal-Tailored Hydrogel Microspheres Recruit and Train Stem Cells for Precise Differentiation
© 2023 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 40 vom: 15. Okt., Seite e2300180 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article cell recruitment hydrogel microspheres mechanotransduction microfluidics stem cell differentiation Hydrogels Ligands Gelatin 9000-70-8 |
Résumé: | © 2023 Wiley-VCH GmbH. The aberrant mechanical microenvironment in degenerated tissues induces misdirection of cell fate, making it challenging to achieve efficient endogenous regeneration. Herein, a hydrogel microsphere-based synthetic niche with integrated cell recruitment and targeted cell differentiation properties via mechanotransduction is constructed . Through the incorporation of microfluidics and photo-polymerization strategies, fibronectin (Fn) modified methacrylated gelatin (GelMA) microspheres are prepared with the independently tunable elastic modulus (1-10Kpa) and ligand density (2 and 10 µg mL-1 ), allowing a wide range of cytoskeleton modulation to trigger the corresponding mechanobiological signaling. The combination of the soft matrix (2Kpa) and low ligand density (2 µg mL-1 ) can support the nucleus pulposus (NP)-like differentiation of intervertebral disc (IVD) progenitor/stem cells by translocating Yes-associated protein (YAP), without the addition of inducible biochemical factors. Meanwhile, platelet-derived growth factor-BB (PDGF-BB) is loaded onto Fn-GelMA microspheres (PDGFFn-GelMA) via the heparin-binding domain of Fn to initiate endogenous cell recruitment. In in vivo experiments, hydrogel microsphere-niche maintained the IVD structure and stimulated matrix synthesis. Overall, this synthetic niche with cell recruiting and mechanical training capabilities offered a promising strategy for endogenous tissue regeneration |
---|---|
Description: | Date Completed 05.10.2023 Date Revised 05.10.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202300180 |