|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM357219732 |
| 003 |
DE-627 |
| 005 |
20250304194216.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
231226s2023 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202210235
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1190.xml
|
| 035 |
|
|
|a (DE-627)NLM357219732
|
| 035 |
|
|
|a (NLM)37219533
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Yang, Chuanruo
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Engineering of Defective MOF-801 Nanostructures within Macroporous Spheres for Highly Efficient and Stable Water Harvesting
|
| 264 |
|
1 |
|c 2023
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 03.08.2023
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
| 520 |
|
|
|a Water harvesting using the metal-organic framework (MOF)-801 is restricted by limited working capacity, powder structuring, and finite stability. To overcome these issues, MOF-801 is crystallized on the surface of macroporous poly(N-isopropylacrylamide-glycidyl methacrylate) spheres, called P(NIPAM-GMA), through an in situ confined growth strategy, forming spherical MOF-801P(NIPAM-GMA) composite with temperature-responsive function. By lowering the nucleation energy barrier, the average size of the MOF-801 crystals decreases by 20 times. Thus, abundant defects as adsorption sites for water can be installed in the crystals lattices. As a consequence, the composite provides an unprecedented high water harvesting efficiency. The composite is produced in the kilogram-scale and can capture 1.60 kg H2 O/kg composite/day from 20% relative humidity between 25 and 85 °C. This study provides an effective methodology for improving the adsorption capacity through controlled defects formation as adsorption sites and to improve the kinetics through the design of a composite with macroporous transport channel network
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a abundant defects
|
| 650 |
|
4 |
|a highly efficient water harvesting
|
| 650 |
|
4 |
|a nanoscale engineering
|
| 650 |
|
4 |
|a rapid kinetics
|
| 650 |
|
4 |
|a temperature-responsive adsorption/desorption
|
| 700 |
1 |
|
|a Wu, Hao
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Yun, Jimmy
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Jin, Junsu
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Meng, Hong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Caro, Jürgen
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Mi, Jianguo
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 31 vom: 02. Aug., Seite e2210235
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:31
|g day:02
|g month:08
|g pages:e2210235
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202210235
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 35
|j 2023
|e 31
|b 02
|c 08
|h e2210235
|