Engineering of Defective MOF-801 Nanostructures within Macroporous Spheres for Highly Efficient and Stable Water Harvesting
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 31 vom: 02. Aug., Seite e2210235 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article abundant defects highly efficient water harvesting nanoscale engineering rapid kinetics temperature-responsive adsorption/desorption |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. Water harvesting using the metal-organic framework (MOF)-801 is restricted by limited working capacity, powder structuring, and finite stability. To overcome these issues, MOF-801 is crystallized on the surface of macroporous poly(N-isopropylacrylamide-glycidyl methacrylate) spheres, called P(NIPAM-GMA), through an in situ confined growth strategy, forming spherical MOF-801P(NIPAM-GMA) composite with temperature-responsive function. By lowering the nucleation energy barrier, the average size of the MOF-801 crystals decreases by 20 times. Thus, abundant defects as adsorption sites for water can be installed in the crystals lattices. As a consequence, the composite provides an unprecedented high water harvesting efficiency. The composite is produced in the kilogram-scale and can capture 1.60 kg H2 O/kg composite/day from 20% relative humidity between 25 and 85 °C. This study provides an effective methodology for improving the adsorption capacity through controlled defects formation as adsorption sites and to improve the kinetics through the design of a composite with macroporous transport channel network |
---|---|
Beschreibung: | Date Revised 03.08.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202210235 |