CSformer : Bridging Convolution and Transformer for Compressive Sensing

Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 26., Seite 2827-2842
1. Verfasser: Ye, Dongjie (VerfasserIn)
Weitere Verfasser: Ni, Zhangkai, Wang, Hanli, Zhang, Jian, Wang, Shiqi, Kwong, Sam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM356892093
003 DE-627
005 20250304185617.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3274988  |2 doi 
028 5 2 |a pubmed25n1189.xml 
035 |a (DE-627)NLM356892093 
035 |a (NLM)37186533 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Dongjie  |e verfasserin  |4 aut 
245 1 0 |a CSformer  |b Bridging Convolution and Transformer for Compressive Sensing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2023 
500 |a Date Revised 23.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improve compressed sensing is still an open issue. This paper proposes CSformer, a hybrid framework to explore the representation capacity of local and global features. The proposed approach is well-designed for end-to-end compressive image sensing, composed of adaptive sampling and recovery. In the sampling module, images are measured block-by-block by the learned sampling matrix. In the reconstruction stage, the measurements are projected into an initialization stem, a CNN stem, and a transformer stem. The initialization stem mimics the traditional reconstruction of compressive sensing but generates the initial reconstruction in a learnable and efficient manner. The CNN stem and transformer stem are concurrent, simultaneously calculating fine-grained and long-range features and efficiently aggregating them. Furthermore, we explore a progressive strategy and window-based transformer block to reduce the parameters and computational complexity. The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing, which achieves superior performance compared to state-of-the-art methods on different datasets. Our codes is available at: https://github.com/Lineves7/CSformer 
650 4 |a Journal Article 
700 1 |a Ni, Zhangkai  |e verfasserin  |4 aut 
700 1 |a Wang, Hanli  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian  |e verfasserin  |4 aut 
700 1 |a Wang, Shiqi  |e verfasserin  |4 aut 
700 1 |a Kwong, Sam  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 26., Seite 2827-2842  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:26  |g pages:2827-2842 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3274988  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 26  |h 2827-2842