CSformer : Bridging Convolution and Transformer for Compressive Sensing

Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 26., Seite 2827-2842
1. Verfasser: Ye, Dongjie (VerfasserIn)
Weitere Verfasser: Ni, Zhangkai, Wang, Hanli, Zhang, Jian, Wang, Shiqi, Kwong, Sam
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Convolutional Neural Networks (CNNs) dominate image processing but suffer from local inductive bias, which is addressed by the transformer framework with its inherent ability to capture global context through self-attention mechanisms. However, how to inherit and integrate their advantages to improve compressed sensing is still an open issue. This paper proposes CSformer, a hybrid framework to explore the representation capacity of local and global features. The proposed approach is well-designed for end-to-end compressive image sensing, composed of adaptive sampling and recovery. In the sampling module, images are measured block-by-block by the learned sampling matrix. In the reconstruction stage, the measurements are projected into an initialization stem, a CNN stem, and a transformer stem. The initialization stem mimics the traditional reconstruction of compressive sensing but generates the initial reconstruction in a learnable and efficient manner. The CNN stem and transformer stem are concurrent, simultaneously calculating fine-grained and long-range features and efficiently aggregating them. Furthermore, we explore a progressive strategy and window-based transformer block to reduce the parameters and computational complexity. The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing, which achieves superior performance compared to state-of-the-art methods on different datasets. Our codes is available at: https://github.com/Lineves7/CSformer
Beschreibung:Date Completed 23.05.2023
Date Revised 23.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3274988