NR-MVSNet : Learning Multi-View Stereo Based on Normal Consistency and Depth Refinement

Multi-view Stereo (MVS) aims to reconstruct a 3D point cloud model from multiple views. In recent years, learning-based MVS methods have received a lot of attention and achieved excellent performance compared with traditional methods. However, these methods still have apparent shortcomings, such as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 20., Seite 2649-2662
1. Verfasser: Li, Jingliang (VerfasserIn)
Weitere Verfasser: Lu, Zhengda, Wang, Yiqun, Xiao, Jun, Wang, Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356491277
003 DE-627
005 20231226070556.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3272170  |2 doi 
028 5 2 |a pubmed24n1188.xml 
035 |a (DE-627)NLM356491277 
035 |a (NLM)37145946 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jingliang  |e verfasserin  |4 aut 
245 1 0 |a NR-MVSNet  |b Learning Multi-View Stereo Based on Normal Consistency and Depth Refinement 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.05.2023 
500 |a Date Revised 14.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view Stereo (MVS) aims to reconstruct a 3D point cloud model from multiple views. In recent years, learning-based MVS methods have received a lot of attention and achieved excellent performance compared with traditional methods. However, these methods still have apparent shortcomings, such as the accumulative error in the coarse-to-fine strategy and the inaccurate depth hypotheses based on the uniform sampling strategy. In this paper, we propose the NR-MVSNet, a coarse-to-fine structure with the depth hypotheses based on the normal consistency (DHNC) module, and the depth refinement with reliable attention (DRRA) module. Specifically, we design the DHNC module to generate more effective depth hypotheses, which collects the depth hypotheses from neighboring pixels with the same normals. As a result, the predicted depth can be smoother and more accurate, especially in texture-less and repetitive-texture regions. On the other hand, we update the initial depth map in the coarse stage by the DRRA module, which can combine attentional reference features and cost volume features to improve the depth estimation accuracy in the coarse stage and address the accumulative error problem. Finally, we conduct a series of experiments on the DTU, BlendedMVS, Tanks & Temples, and ETH3D datasets. The experimental results demonstrate the efficiency and robustness of our NR-MVSNet compared with the state-of-the-art methods. Our implementation is available at https://github.com/wdkyh/NR-MVSNet 
650 4 |a Journal Article 
700 1 |a Lu, Zhengda  |e verfasserin  |4 aut 
700 1 |a Wang, Yiqun  |e verfasserin  |4 aut 
700 1 |a Xiao, Jun  |e verfasserin  |4 aut 
700 1 |a Wang, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 20., Seite 2649-2662  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:20  |g pages:2649-2662 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3272170  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 20  |h 2649-2662