NR-MVSNet : Learning Multi-View Stereo Based on Normal Consistency and Depth Refinement

Multi-view Stereo (MVS) aims to reconstruct a 3D point cloud model from multiple views. In recent years, learning-based MVS methods have received a lot of attention and achieved excellent performance compared with traditional methods. However, these methods still have apparent shortcomings, such as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 20., Seite 2649-2662
1. Verfasser: Li, Jingliang (VerfasserIn)
Weitere Verfasser: Lu, Zhengda, Wang, Yiqun, Xiao, Jun, Wang, Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Multi-view Stereo (MVS) aims to reconstruct a 3D point cloud model from multiple views. In recent years, learning-based MVS methods have received a lot of attention and achieved excellent performance compared with traditional methods. However, these methods still have apparent shortcomings, such as the accumulative error in the coarse-to-fine strategy and the inaccurate depth hypotheses based on the uniform sampling strategy. In this paper, we propose the NR-MVSNet, a coarse-to-fine structure with the depth hypotheses based on the normal consistency (DHNC) module, and the depth refinement with reliable attention (DRRA) module. Specifically, we design the DHNC module to generate more effective depth hypotheses, which collects the depth hypotheses from neighboring pixels with the same normals. As a result, the predicted depth can be smoother and more accurate, especially in texture-less and repetitive-texture regions. On the other hand, we update the initial depth map in the coarse stage by the DRRA module, which can combine attentional reference features and cost volume features to improve the depth estimation accuracy in the coarse stage and address the accumulative error problem. Finally, we conduct a series of experiments on the DTU, BlendedMVS, Tanks & Temples, and ETH3D datasets. The experimental results demonstrate the efficiency and robustness of our NR-MVSNet compared with the state-of-the-art methods. Our implementation is available at https://github.com/wdkyh/NR-MVSNet
Beschreibung:Date Completed 14.05.2023
Date Revised 14.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3272170