High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing

Histopathological Whole Slide Images (WSIs) play a crucial role in cancer diagnosis. It is of significant importance for pathologists to search for images sharing similar content with the query WSI, especially in the case-based diagnosis. While slide-level retrieval could be more intuitive and pract...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 25. Sept., Seite 11008-11023
1. Verfasser: Li, Shengrui (VerfasserIn)
Weitere Verfasser: Zhao, Yining, Zhang, Jun, Yu, Ting, Zhang, Ji, Gao, Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM356014568
003 DE-627
005 20231226065548.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3269810  |2 doi 
028 5 2 |a pubmed24n1186.xml 
035 |a (DE-627)NLM356014568 
035 |a (NLM)37097802 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Shengrui  |e verfasserin  |4 aut 
245 1 0 |a High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.10.2023 
500 |a Date Revised 04.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Histopathological Whole Slide Images (WSIs) play a crucial role in cancer diagnosis. It is of significant importance for pathologists to search for images sharing similar content with the query WSI, especially in the case-based diagnosis. While slide-level retrieval could be more intuitive and practical in clinical applications, most methods are designed for patch-level retrieval. A few recently unsupervised slide-level methods only focus on integrating patch features directly, without perceiving slide-level information, and thus severely limits the performance of WSI retrieval. To tackle the issue, we propose a High-Order Correlation-Guided Self-Supervised Hashing-Encoding Retrieval (HSHR) method. Specifically, we train an attention-based hash encoder with slide-level representation in a self-supervised manner, enabling it to generate more representative slide-level hash codes of cluster centers and assign weights for each. These optimized and weighted codes are leveraged to establish a similarity-based hypergraph, in which a hypergraph-guided retrieval module is adopted to explore high-order correlations in the multi-pairwise manifold to conduct WSI retrieval. Extensive experiments on multiple TCGA datasets with over 24,000 WSIs spanning 30 cancer subtypes demonstrate that HSHR achieves state-of-the-art performance compared with other unsupervised histology WSI retrieval methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhao, Yining  |e verfasserin  |4 aut 
700 1 |a Zhang, Jun  |e verfasserin  |4 aut 
700 1 |a Yu, Ting  |e verfasserin  |4 aut 
700 1 |a Zhang, Ji  |e verfasserin  |4 aut 
700 1 |a Gao, Yue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 9 vom: 25. Sept., Seite 11008-11023  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:9  |g day:25  |g month:09  |g pages:11008-11023 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3269810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 9  |b 25  |c 09  |h 11008-11023