High-Order Correlation-Guided Slide-Level Histology Retrieval With Self-Supervised Hashing
Histopathological Whole Slide Images (WSIs) play a crucial role in cancer diagnosis. It is of significant importance for pathologists to search for images sharing similar content with the query WSI, especially in the case-based diagnosis. While slide-level retrieval could be more intuitive and pract...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 25. Sept., Seite 11008-11023 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Histopathological Whole Slide Images (WSIs) play a crucial role in cancer diagnosis. It is of significant importance for pathologists to search for images sharing similar content with the query WSI, especially in the case-based diagnosis. While slide-level retrieval could be more intuitive and practical in clinical applications, most methods are designed for patch-level retrieval. A few recently unsupervised slide-level methods only focus on integrating patch features directly, without perceiving slide-level information, and thus severely limits the performance of WSI retrieval. To tackle the issue, we propose a High-Order Correlation-Guided Self-Supervised Hashing-Encoding Retrieval (HSHR) method. Specifically, we train an attention-based hash encoder with slide-level representation in a self-supervised manner, enabling it to generate more representative slide-level hash codes of cluster centers and assign weights for each. These optimized and weighted codes are leveraged to establish a similarity-based hypergraph, in which a hypergraph-guided retrieval module is adopted to explore high-order correlations in the multi-pairwise manifold to conduct WSI retrieval. Extensive experiments on multiple TCGA datasets with over 24,000 WSIs spanning 30 cancer subtypes demonstrate that HSHR achieves state-of-the-art performance compared with other unsupervised histology WSI retrieval methods |
---|---|
Beschreibung: | Date Completed 04.10.2023 Date Revised 04.10.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3269810 |