Viewpoint-Adaptive Representation Disentanglement Network for Change Captioning

Change captioning is to describe the fine-grained change between a pair of images. The pseudo changes caused by viewpoint changes are the most typical distractors in this task, because they lead to the feature perturbation and shift for the same objects and thus overwhelm the real change representat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 25., Seite 2620-2635
1. Verfasser: Tu, Yunbin (VerfasserIn)
Weitere Verfasser: Li, Liang, Su, Li, Du, Junping, Lu, Ke, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM356014533
003 DE-627
005 20231226065548.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3268004  |2 doi 
028 5 2 |a pubmed24n1186.xml 
035 |a (DE-627)NLM356014533 
035 |a (NLM)37097800 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tu, Yunbin  |e verfasserin  |4 aut 
245 1 0 |a Viewpoint-Adaptive Representation Disentanglement Network for Change Captioning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Change captioning is to describe the fine-grained change between a pair of images. The pseudo changes caused by viewpoint changes are the most typical distractors in this task, because they lead to the feature perturbation and shift for the same objects and thus overwhelm the real change representation. In this paper, we propose a viewpoint-adaptive representation disentanglement network to distinguish real and pseudo changes, and explicitly capture the features of change to generate accurate captions. Concretely, a position-embedded representation learning is devised to facilitate the model in adapting to viewpoint changes via mining the intrinsic properties of two image representations and modeling their position information. To learn a reliable change representation for decoding into a natural language sentence, an unchanged representation disentanglement is designed to identify and disentangle the unchanged features between the two position-embedded representations. Extensive experiments show that the proposed method achieves the state-of-the-art performance on the four public datasets. The code is available at https://github.com/tuyunbin/VARD 
650 4 |a Journal Article 
700 1 |a Li, Liang  |e verfasserin  |4 aut 
700 1 |a Su, Li  |e verfasserin  |4 aut 
700 1 |a Du, Junping  |e verfasserin  |4 aut 
700 1 |a Lu, Ke  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 25., Seite 2620-2635  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:25  |g pages:2620-2635 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3268004  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 25  |h 2620-2635