Viewpoint-Adaptive Representation Disentanglement Network for Change Captioning
Change captioning is to describe the fine-grained change between a pair of images. The pseudo changes caused by viewpoint changes are the most typical distractors in this task, because they lead to the feature perturbation and shift for the same objects and thus overwhelm the real change representat...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 25., Seite 2620-2635 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Change captioning is to describe the fine-grained change between a pair of images. The pseudo changes caused by viewpoint changes are the most typical distractors in this task, because they lead to the feature perturbation and shift for the same objects and thus overwhelm the real change representation. In this paper, we propose a viewpoint-adaptive representation disentanglement network to distinguish real and pseudo changes, and explicitly capture the features of change to generate accurate captions. Concretely, a position-embedded representation learning is devised to facilitate the model in adapting to viewpoint changes via mining the intrinsic properties of two image representations and modeling their position information. To learn a reliable change representation for decoding into a natural language sentence, an unchanged representation disentanglement is designed to identify and disentangle the unchanged features between the two position-embedded representations. Extensive experiments show that the proposed method achieves the state-of-the-art performance on the four public datasets. The code is available at https://github.com/tuyunbin/VARD |
---|---|
Beschreibung: | Date Completed 07.05.2023 Date Revised 07.05.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2023.3268004 |