Role of Interfacial Defects on Electro-Chemo-Mechanical Failure of Solid-State Electrolyte

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 24 vom: 08. Juni, Seite e2301152
1. Verfasser: Liu, Yangyang (VerfasserIn)
Weitere Verfasser: Xu, Xieyu, Jiao, Xingxing, Kapitanova, Olesya O, Song, Zhongxiao, Xiong, Shizhao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electro-chemo-mechanics interfacial defects mechanical failure solid-state batteries solid-state electrolyte
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
High-stress field generated by electroplating of lithium (Li) in pre-existing defects is the main reason for mechanical failure of solid-state electrolyte because it drives crack propagation in electrolyte, followed by Li filament growth inside and even internal short-circuit if the filament reaches another electrode. To understand the role of interfacial defects on mechanical failure of solid-state electrolyte, an electro-chemo-mechanical model is built to visualize distribution of stress, relative damage, and crack formation during electrochemical plating of Li in defects. Geometry of interfacial defect is found as dominating factor for concentration of local stress field while semi-sphere defect delivers less accumulation of damage at initial stage and the longest failure time for disintegration of electrolyte. Aspect ratio, as a key geometric parameter of defect, is investigated to reveal its impact on failure of electrolyte. Pyramidic defect with low aspect ratio of 0.2-0.5 shows branched region of damage near interface, probably causing surface pulverization of solid-state electrolyte, whereas high aspect ratio over 3.0 will trigger accumulation of damage in bulk electrolyte. The correction between interfacial defect and electro-chemo-mechanical failure of solid-state electrolyte is expected to provide insightful guidelines for interface design in high-power-density solid-state Li metal batteries
Beschreibung:Date Completed 15.06.2023
Date Revised 15.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202301152