Role of Interfacial Defects on Electro-Chemo-Mechanical Failure of Solid-State Electrolyte

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 24 vom: 08. Juni, Seite e2301152
Auteur principal: Liu, Yangyang (Auteur)
Autres auteurs: Xu, Xieyu, Jiao, Xingxing, Kapitanova, Olesya O, Song, Zhongxiao, Xiong, Shizhao
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article electro-chemo-mechanics interfacial defects mechanical failure solid-state batteries solid-state electrolyte
LEADER 01000caa a22002652c 4500
001 NLM355644568
003 DE-627
005 20250304160616.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202301152  |2 doi 
028 5 2 |a pubmed25n1185.xml 
035 |a (DE-627)NLM355644568 
035 |a (NLM)37060331 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yangyang  |e verfasserin  |4 aut 
245 1 0 |a Role of Interfacial Defects on Electro-Chemo-Mechanical Failure of Solid-State Electrolyte 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.06.2023 
500 |a Date Revised 15.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a High-stress field generated by electroplating of lithium (Li) in pre-existing defects is the main reason for mechanical failure of solid-state electrolyte because it drives crack propagation in electrolyte, followed by Li filament growth inside and even internal short-circuit if the filament reaches another electrode. To understand the role of interfacial defects on mechanical failure of solid-state electrolyte, an electro-chemo-mechanical model is built to visualize distribution of stress, relative damage, and crack formation during electrochemical plating of Li in defects. Geometry of interfacial defect is found as dominating factor for concentration of local stress field while semi-sphere defect delivers less accumulation of damage at initial stage and the longest failure time for disintegration of electrolyte. Aspect ratio, as a key geometric parameter of defect, is investigated to reveal its impact on failure of electrolyte. Pyramidic defect with low aspect ratio of 0.2-0.5 shows branched region of damage near interface, probably causing surface pulverization of solid-state electrolyte, whereas high aspect ratio over 3.0 will trigger accumulation of damage in bulk electrolyte. The correction between interfacial defect and electro-chemo-mechanical failure of solid-state electrolyte is expected to provide insightful guidelines for interface design in high-power-density solid-state Li metal batteries 
650 4 |a Journal Article 
650 4 |a electro-chemo-mechanics 
650 4 |a interfacial defects 
650 4 |a mechanical failure 
650 4 |a solid-state batteries 
650 4 |a solid-state electrolyte 
700 1 |a Xu, Xieyu  |e verfasserin  |4 aut 
700 1 |a Jiao, Xingxing  |e verfasserin  |4 aut 
700 1 |a Kapitanova, Olesya O  |e verfasserin  |4 aut 
700 1 |a Song, Zhongxiao  |e verfasserin  |4 aut 
700 1 |a Xiong, Shizhao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 24 vom: 08. Juni, Seite e2301152  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:24  |g day:08  |g month:06  |g pages:e2301152 
856 4 0 |u http://dx.doi.org/10.1002/adma.202301152  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 24  |b 08  |c 06  |h e2301152