Multi-Object Navigation Using Potential Target Position Policy Function

Visual object navigation is an essential task of embodied AI, which is letting the agent navigate to the goal object under the user's demand. Previous methods often focus on single-object navigation. However, in real life, human demands are generally continuous and multiple, requiring the agent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 11., Seite 2608-2619
1. Verfasser: Zeng, Haitao (VerfasserIn)
Weitere Verfasser: Song, Xinhang, Jiang, Shuqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Visual object navigation is an essential task of embodied AI, which is letting the agent navigate to the goal object under the user's demand. Previous methods often focus on single-object navigation. However, in real life, human demands are generally continuous and multiple, requiring the agent to implement multiple tasks in sequence. These demands can be addressed by repeatedly performing previous single task methods. However, by dividing multiple tasks into several independent tasks to perform, without the global optimization between different tasks, the agents' trajectories may overlap, reducing the efficiency of navigation. In this paper, we propose an efficient reinforcement learning framework with a hybrid policy for multi-object navigation, aiming to maximally eliminate noneffective actions. First, the visual observations are embedded to detect the semantic entities (such as objects). And the detected objects are memorized and projected into semantic maps, which can also be regarded as a long-term memory of the observed environment. Then a hybrid policy consisting of exploration and long-term planning strategies is proposed to predict the potential target position. In particular, when the target is directly oriented, the policy function makes long-term planning for the target based on the semantic map, which is implemented by a sequence of motion actions. In the alternative, when the target is not oriented, the policy function estimates an object's potential position toward exploring the most possible objects (positions) that have close relations to the target. The relation between different objects is obtained with prior knowledge, which is used to predict the potential target position by integrating with the memorized semantic map. And then a path to the potential target is planned by the policy function. We evaluate our proposed method on two large-scale 3D realistic environment datasets, Gibson and Matterport3D, and the experimental results demonstrate the effectiveness and generalization of the proposed method
Beschreibung:Date Completed 07.05.2023
Date Revised 07.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3263110