QGORE : Quadratic-Time Guaranteed Outlier Removal for Point Cloud Registration

With the development of 3D matching technology, correspondence-based point cloud registration gains more attention. Unfortunately, 3D keypoint techniques inevitably produce a large number of outliers, i.e., outlier rate is often larger than 95%. Guaranteed outlier removal (GORE) Bustos and Chin has...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 9 vom: 04. Sept., Seite 11136-11151
1. Verfasser: Li, Jiayuan (VerfasserIn)
Weitere Verfasser: Shi, Pengcheng, Hu, Qingwu, Zhang, Yongjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355353563
003 DE-627
005 20231226064152.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3262780  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355353563 
035 |a (NLM)37030708 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiayuan  |e verfasserin  |4 aut 
245 1 0 |a QGORE  |b Quadratic-Time Guaranteed Outlier Removal for Point Cloud Registration 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a With the development of 3D matching technology, correspondence-based point cloud registration gains more attention. Unfortunately, 3D keypoint techniques inevitably produce a large number of outliers, i.e., outlier rate is often larger than 95%. Guaranteed outlier removal (GORE) Bustos and Chin has shown very good robustness to extreme outliers. However, the high computational cost (exponential in the worst case) largely limits its usages in practice. In this paper, we propose the first O(N2) time GORE method, called quadratic-time GORE (QGORE), which preserves the globally optimal solution while largely increases the efficiency. QGORE leverages a simple but effective voting idea via geometric consistency for upper bound estimation, which achieves almost the same tightness as the one in GORE. We also present a one-point RANSAC by exploring "rotation correspondence" for lower bound estimation, which largely reduces the number of iterations of traditional 3-point RANSAC. Further, we propose a l p-like adaptive estimator for optimization. Extensive experiments show that QGORE achieves the same robustness and optimality as GORE while being 1  ∼ 2 orders faster. The source code will be made publicly available 
650 4 |a Journal Article 
700 1 |a Shi, Pengcheng  |e verfasserin  |4 aut 
700 1 |a Hu, Qingwu  |e verfasserin  |4 aut 
700 1 |a Zhang, Yongjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 9 vom: 04. Sept., Seite 11136-11151  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:9  |g day:04  |g month:09  |g pages:11136-11151 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3262780  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 9  |b 04  |c 09  |h 11136-11151