|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM355342707 |
003 |
DE-627 |
005 |
20231226064139.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202301320
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1184.xml
|
035 |
|
|
|a (DE-627)NLM355342707
|
035 |
|
|
|a (NLM)37029618
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Biao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Physicochemical Dual Cross-Linking Conductive Polymeric Networks Combining High Strength and High Toughness Enable Stable Operation of Silicon Microparticle Anodes
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a The poor interfacial stability and insufficient cycling performance caused by undesirable stress hinder the commercial application of silicon microparticles (µSi) as next-generation anode materials for high-energy-density lithium-ion batteries. Herein, a conceptionally novel physicochemical dual cross-linking conductive polymeric network is designed combining high strength and high toughness by coupling the stiffness of poly(acrylic acid) and the softness of carboxyl nitrile rubber, which includes multiple H-bonds, by introducing highly branched tannic acid as a physical cross-linker. Such a design enables effective stress dissipation by folded molecular chains slipping and sequential cleavage of H-bonds, thus stabilizing the electrode interface and enhancing cycle stability. As expected, the resultant electrode (µSi/PTBR) delivers an unprecedented high capacity retention of ≈97% from 2027.9 mAh g-1 at the 19th to 1968.0 mAh g-1 at the 200th cycle at 2 A g-1 . Meanwhile, this unique stress dissipation strategy is also suitable for stabilizing SiOx anodes with a much lower capacity loss of ≈0.012% per cycle over 1000 cycles at 1.5 A g-1 . Atomic force microscopy analysis and finite element simulations reveal the excellent stress-distribution ability of the physicochemical dual cross-linking conductive polymeric network. This work provides an efficient energy-dissipation strategy toward practical high-capacity anodes for energy-dense batteries
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a conductive polymeric networks
|
650 |
|
4 |
|a energy-dissipation strategies
|
650 |
|
4 |
|a high strength and high toughness
|
650 |
|
4 |
|a physicochemical dual cross-linking
|
650 |
|
4 |
|a silicon anodes
|
700 |
1 |
|
|a Dong, Yanling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Jingrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhen, Yunjing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Chuangang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Dong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 29 vom: 08. Juli, Seite e2301320
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:29
|g day:08
|g month:07
|g pages:e2301320
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202301320
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 29
|b 08
|c 07
|h e2301320
|