Physicochemical Dual Cross-Linking Conductive Polymeric Networks Combining High Strength and High Toughness Enable Stable Operation of Silicon Microparticle Anodes
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 29 vom: 08. Juli, Seite e2301320 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article conductive polymeric networks energy-dissipation strategies high strength and high toughness physicochemical dual cross-linking silicon anodes |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. The poor interfacial stability and insufficient cycling performance caused by undesirable stress hinder the commercial application of silicon microparticles (µSi) as next-generation anode materials for high-energy-density lithium-ion batteries. Herein, a conceptionally novel physicochemical dual cross-linking conductive polymeric network is designed combining high strength and high toughness by coupling the stiffness of poly(acrylic acid) and the softness of carboxyl nitrile rubber, which includes multiple H-bonds, by introducing highly branched tannic acid as a physical cross-linker. Such a design enables effective stress dissipation by folded molecular chains slipping and sequential cleavage of H-bonds, thus stabilizing the electrode interface and enhancing cycle stability. As expected, the resultant electrode (µSi/PTBR) delivers an unprecedented high capacity retention of ≈97% from 2027.9 mAh g-1 at the 19th to 1968.0 mAh g-1 at the 200th cycle at 2 A g-1 . Meanwhile, this unique stress dissipation strategy is also suitable for stabilizing SiOx anodes with a much lower capacity loss of ≈0.012% per cycle over 1000 cycles at 1.5 A g-1 . Atomic force microscopy analysis and finite element simulations reveal the excellent stress-distribution ability of the physicochemical dual cross-linking conductive polymeric network. This work provides an efficient energy-dissipation strategy toward practical high-capacity anodes for energy-dense batteries |
---|---|
Beschreibung: | Date Revised 20.07.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202301320 |