Semi-Sparsity for Smoothing Filters

In this paper, we propose a semi-sparsity smoothing method based on a new sparsity-induced minimization scheme. The model is derived from the observations that semi-sparsity prior knowledge is universally applicable in situations where sparsity is not fully admitted such as in the polynomial-smoothi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 04., Seite 1627-1639
1. Verfasser: Huang, Junqing (VerfasserIn)
Weitere Verfasser: Wang, Haihui, Wang, Xuechao, Ruzhansky, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35532413X
003 DE-627
005 20250509103806.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3247181  |2 doi 
028 5 2 |a pubmed25n1365.xml 
035 |a (DE-627)NLM35532413X 
035 |a (NLM)37027756 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Junqing  |e verfasserin  |4 aut 
245 1 0 |a Semi-Sparsity for Smoothing Filters 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a semi-sparsity smoothing method based on a new sparsity-induced minimization scheme. The model is derived from the observations that semi-sparsity prior knowledge is universally applicable in situations where sparsity is not fully admitted such as in the polynomial-smoothing surfaces. We illustrate that such priors can be identified into a generalized $L_{0}$ -norm minimization problem in higher-order gradient domains, giving rise to a new "feature-aware" filter with a powerful simultaneous-fitting ability in both sparse singularities (corners and salient edges) and polynomial-smoothing surfaces. Notice that a direct solver to the proposed model is not available due to the non-convexity and combinatorial nature of $L_{0}$ -norm minimization. Instead, we propose to solve it approximately based on an efficient half-quadratic splitting technique. We demonstrate its versatility and many benefits to a series of signal/image processing and computer vision applications 
650 4 |a Journal Article 
700 1 |a Wang, Haihui  |e verfasserin  |4 aut 
700 1 |a Wang, Xuechao  |e verfasserin  |4 aut 
700 1 |a Ruzhansky, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 04., Seite 1627-1639  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:32  |g year:2023  |g day:04  |g pages:1627-1639 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3247181  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 04  |h 1627-1639