Semi-Sparsity for Smoothing Filters

In this paper, we propose a semi-sparsity smoothing method based on a new sparsity-induced minimization scheme. The model is derived from the observations that semi-sparsity prior knowledge is universally applicable in situations where sparsity is not fully admitted such as in the polynomial-smoothi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 04., Seite 1627-1639
1. Verfasser: Huang, Junqing (VerfasserIn)
Weitere Verfasser: Wang, Haihui, Wang, Xuechao, Ruzhansky, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we propose a semi-sparsity smoothing method based on a new sparsity-induced minimization scheme. The model is derived from the observations that semi-sparsity prior knowledge is universally applicable in situations where sparsity is not fully admitted such as in the polynomial-smoothing surfaces. We illustrate that such priors can be identified into a generalized $L_{0}$ -norm minimization problem in higher-order gradient domains, giving rise to a new "feature-aware" filter with a powerful simultaneous-fitting ability in both sparse singularities (corners and salient edges) and polynomial-smoothing surfaces. Notice that a direct solver to the proposed model is not available due to the non-convexity and combinatorial nature of $L_{0}$ -norm minimization. Instead, we propose to solve it approximately based on an efficient half-quadratic splitting technique. We demonstrate its versatility and many benefits to a series of signal/image processing and computer vision applications
Beschreibung:Date Revised 04.04.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2023.3247181