Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network

The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2023) vom: 22. Feb.
1. Verfasser: Liu, Yanan (VerfasserIn)
Weitere Verfasser: Zhang, Hao, Li, Yanqiu, He, Kangjian, Xu, Dan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355323567
003 DE-627
005 20231226064115.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3247075  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355323567 
035 |a (NLM)37027698 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yanan  |e verfasserin  |4 aut 
245 1 0 |a Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., skeleton graph, then learns the spatio-temporal pattern via graph convolution operators. Still, the stacked graph convolution plays a marginal role in modeling long-range dependences that may contain crucial action semantic cues. In this work, we introduce a skeleton large kernel attention operator (SLKA), which can enlarge the receptive field and improve channel adaptability without increasing too much computational burden. Then a spatiotemporal SLKA module (ST-SLKA) is integrated, which can aggregate long-range spatial features and learn long-distance temporal correlations. Further, we have designed a novel skeleton-based action recognition network architecture called the spatiotemporal large-kernel attention graph convolution network (LKA-GCN). In addition, large-movement frames may carry significant action information. This work proposes a joint movement modeling strategy (JMM) to focus on valuable temporal interactions. Ultimately, on the NTU-RGBD 60, NTU-RGBD 120 and Kinetics-Skeleton 400 action datasets, the performance of our LKA-GCN has achieved a state-of-the-art level 
650 4 |a Journal Article 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
700 1 |a Li, Yanqiu  |e verfasserin  |4 aut 
700 1 |a He, Kangjian  |e verfasserin  |4 aut 
700 1 |a Xu, Dan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2023) vom: 22. Feb.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:22  |g month:02 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3247075  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 22  |c 02