Asymmetric Loss Functions for Noise-Tolerant Learning : Theory and Applications

Supervised deep learning has achieved tremendous success in many computer vision tasks, which however is prone to overfit noisy labels. To mitigate the undesirable influence of noisy labels, robust loss functions offer a feasible approach to achieve noise-tolerant learning. In this work, we systemat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 09. Juli, Seite 8094-8109
1. Verfasser: Zhou, Xiong (VerfasserIn)
Weitere Verfasser: Liu, Xianming, Zhai, Deming, Jiang, Junjun, Ji, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355275279
003 DE-627
005 20231226064015.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3236459  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355275279 
035 |a (NLM)37022833 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Xiong  |e verfasserin  |4 aut 
245 1 0 |a Asymmetric Loss Functions for Noise-Tolerant Learning  |b Theory and Applications 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Supervised deep learning has achieved tremendous success in many computer vision tasks, which however is prone to overfit noisy labels. To mitigate the undesirable influence of noisy labels, robust loss functions offer a feasible approach to achieve noise-tolerant learning. In this work, we systematically study the problem of noise-tolerant learning with respect to both classification and regression. Specifically, we propose a new class of loss function, namely asymmetric loss functions (ALFs), which are tailored to satisfy the Bayes-optimal condition and thus are robust to noisy labels. For classification, we investigate general theoretical properties of ALFs on categorical noisy labels, and introduce the asymmetry ratio to measure the asymmetry of a loss function. We extend several commonly-used loss functions, and establish the necessary and sufficient conditions to make them asymmetric and thus noise-tolerant. For regression, we extend the concept of noise-tolerant learning for image restoration with continuous noisy labels. We theoretically prove that lp loss ( ) is noise-tolerant for targets with the additive white Gaussian noise. For targets with general noise, we introduce two losses as surrogates of l0 loss that seeks the mode when clean pixels keep dominant. Experimental results demonstrate that ALFs can achieve better or comparative performance compared with the state-of-the-arts. The source code of our method is available at: https://github.com/hitcszx/ALFs 
650 4 |a Journal Article 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Zhai, Deming  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Ji, Xiangyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 09. Juli, Seite 8094-8109  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:09  |g month:07  |g pages:8094-8109 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3236459  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 09  |c 07  |h 8094-8109