Asymmetric Loss Functions for Noise-Tolerant Learning : Theory and Applications

Supervised deep learning has achieved tremendous success in many computer vision tasks, which however is prone to overfit noisy labels. To mitigate the undesirable influence of noisy labels, robust loss functions offer a feasible approach to achieve noise-tolerant learning. In this work, we systemat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 09. Juli, Seite 8094-8109
1. Verfasser: Zhou, Xiong (VerfasserIn)
Weitere Verfasser: Liu, Xianming, Zhai, Deming, Jiang, Junjun, Ji, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article