AGConv : Adaptive Graph Convolution on 3D Point Clouds

Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor distinctive feature learning. In this article, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 8 vom: 20. Aug., Seite 9374-9392
1. Verfasser: Wei, Mingqiang (VerfasserIn)
Weitere Verfasser: Wei, Zeyong, Zhou, Haoran, Hu, Fei, Si, Huajian, Chen, Zhilei, Zhu, Zhe, Qiu, Jingbo, Yan, Xuefeng, Guo, Yanwen, Wang, Jun, Qin, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM355267152
003 DE-627
005 20231226064005.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3238516  |2 doi 
028 5 2 |a pubmed24n1184.xml 
035 |a (DE-627)NLM355267152 
035 |a (NLM)37022019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Mingqiang  |e verfasserin  |4 aut 
245 1 0 |a AGConv  |b Adaptive Graph Convolution on 3D Point Clouds 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor distinctive feature learning. In this article, we propose Adaptive Graph Convolution (AGConv) for wide applications of point cloud analysis. AGConv generates adaptive kernels for points according to their dynamically learned features. Compared with the solution of using fixed/isotropic kernels, AGConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike the popular attentional weight schemes, AGConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive evaluations clearly show that our method outperforms state-of-the-arts of point cloud classification and segmentation on various benchmark datasets. Meanwhile, AGConv can flexibly serve more point cloud analysis approaches to boost their performance. To validate its flexibility and effectiveness, we explore AGConv-based paradigms of completion, denoising, upsampling, registration and circle extraction, which are comparable or even superior to their competitors 
650 4 |a Journal Article 
700 1 |a Wei, Zeyong  |e verfasserin  |4 aut 
700 1 |a Zhou, Haoran  |e verfasserin  |4 aut 
700 1 |a Hu, Fei  |e verfasserin  |4 aut 
700 1 |a Si, Huajian  |e verfasserin  |4 aut 
700 1 |a Chen, Zhilei  |e verfasserin  |4 aut 
700 1 |a Zhu, Zhe  |e verfasserin  |4 aut 
700 1 |a Qiu, Jingbo  |e verfasserin  |4 aut 
700 1 |a Yan, Xuefeng  |e verfasserin  |4 aut 
700 1 |a Guo, Yanwen  |e verfasserin  |4 aut 
700 1 |a Wang, Jun  |e verfasserin  |4 aut 
700 1 |a Qin, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 8 vom: 20. Aug., Seite 9374-9392  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:8  |g day:20  |g month:08  |g pages:9374-9392 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3238516  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 8  |b 20  |c 08  |h 9374-9392