Transforming Complex Problems Into K-Means Solutions

K-means is a fundamental clustering algorithm widely used in both academic and industrial applications. Its popularity can be attributed to its simplicity and efficiency. Studies show the equivalence of K-means to principal component analysis, non-negative matrix factorization, and spectral clusteri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 20. Juli, Seite 9149-9168
1. Verfasser: Liu, Hongfu (VerfasserIn)
Weitere Verfasser: Chen, Junxiang, Dy, Jennifer, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM355266164
003 DE-627
005 20240921234509.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3237667  |2 doi 
028 5 2 |a pubmed24n1541.xml 
035 |a (DE-627)NLM355266164 
035 |a (NLM)37021920 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Hongfu  |e verfasserin  |4 aut 
245 1 0 |a Transforming Complex Problems Into K-Means Solutions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 21.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a K-means is a fundamental clustering algorithm widely used in both academic and industrial applications. Its popularity can be attributed to its simplicity and efficiency. Studies show the equivalence of K-means to principal component analysis, non-negative matrix factorization, and spectral clustering. However, these studies focus on standard K-means with squared euclidean distance. In this review paper, we unify the available approaches in generalizing K-means to solve challenging and complex problems. We show that these generalizations can be seen from four aspects: data representation, distance measure, label assignment, and centroid updating. As concrete applications of transforming problems into modified K-means formulation, we review the following applications: iterative subspace projection and clustering, consensus clustering, constrained clustering, domain adaptation, and outlier detection 
650 4 |a Journal Article 
700 1 |a Chen, Junxiang  |e verfasserin  |4 aut 
700 1 |a Dy, Jennifer  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 20. Juli, Seite 9149-9168  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:20  |g month:07  |g pages:9149-9168 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3237667  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 20  |c 07  |h 9149-9168