Transforming Complex Problems Into K-Means Solutions
K-means is a fundamental clustering algorithm widely used in both academic and industrial applications. Its popularity can be attributed to its simplicity and efficiency. Studies show the equivalence of K-means to principal component analysis, non-negative matrix factorization, and spectral clusteri...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 20. Juli, Seite 9149-9168 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | K-means is a fundamental clustering algorithm widely used in both academic and industrial applications. Its popularity can be attributed to its simplicity and efficiency. Studies show the equivalence of K-means to principal component analysis, non-negative matrix factorization, and spectral clustering. However, these studies focus on standard K-means with squared euclidean distance. In this review paper, we unify the available approaches in generalizing K-means to solve challenging and complex problems. We show that these generalizations can be seen from four aspects: data representation, distance measure, label assignment, and centroid updating. As concrete applications of transforming problems into modified K-means formulation, we review the following applications: iterative subspace projection and clustering, consensus clustering, constrained clustering, domain adaptation, and outlier detection |
---|---|
Beschreibung: | Date Completed 06.06.2023 Date Revised 21.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2023.3237667 |