Neural Radiance Fields From Sparse RGB-D Images for High-Quality View Synthesis

The recently proposed neural radiance fields (NeRF) use a continuous function formulated as a multi-layer perceptron (MLP) to model the appearance and geometry of a 3D scene. This enables realistic synthesis of novel views, even for scenes with view dependent appearance. Many follow-up works have si...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 08. Juli, Seite 8713-8728
1. Verfasser: Yuan, Yu-Jie (VerfasserIn)
Weitere Verfasser: Lai, Yu-Kun, Huang, Yi-Hua, Kobbelt, Leif, Gao, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM35520259X
003 DE-627
005 20250304150743.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3232502  |2 doi 
028 5 2 |a pubmed25n1183.xml 
035 |a (DE-627)NLM35520259X 
035 |a (NLM)37015513 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Yu-Jie  |e verfasserin  |4 aut 
245 1 0 |a Neural Radiance Fields From Sparse RGB-D Images for High-Quality View Synthesis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2023 
500 |a Date Revised 06.06.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The recently proposed neural radiance fields (NeRF) use a continuous function formulated as a multi-layer perceptron (MLP) to model the appearance and geometry of a 3D scene. This enables realistic synthesis of novel views, even for scenes with view dependent appearance. Many follow-up works have since extended NeRFs in different ways. However, a fundamental restriction of the method remains that it requires a large number of images captured from densely placed viewpoints for high-quality synthesis and the quality of the results quickly degrades when the number of captured views is insufficient. To address this problem, we propose a novel NeRF-based framework capable of high-quality view synthesis using only a sparse set of RGB-D images, which can be easily captured using cameras and LiDAR sensors on current consumer devices. First, a geometric proxy of the scene is reconstructed from the captured RGB-D images. Renderings of the reconstructed scene along with precise camera parameters can then be used to pre-train a network. Finally, the network is fine-tuned with a small number of real captured images. We further introduce a patch discriminator to supervise the network under novel views during fine-tuning, as well as a 3D color prior to improve synthesis quality. We demonstrate that our method can generate arbitrary novel views of a 3D scene from as few as 6 RGB-D images. Extensive experiments show the improvements of our method compared with the existing NeRF-based methods, including approaches that also aim to reduce the number of input images 
650 4 |a Journal Article 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Huang, Yi-Hua  |e verfasserin  |4 aut 
700 1 |a Kobbelt, Leif  |e verfasserin  |4 aut 
700 1 |a Gao, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 08. Juli, Seite 8713-8728  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:08  |g month:07  |g pages:8713-8728 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3232502  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 08  |c 07  |h 8713-8728