Neural Radiance Fields From Sparse RGB-D Images for High-Quality View Synthesis

The recently proposed neural radiance fields (NeRF) use a continuous function formulated as a multi-layer perceptron (MLP) to model the appearance and geometry of a 3D scene. This enables realistic synthesis of novel views, even for scenes with view dependent appearance. Many follow-up works have si...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 08. Juli, Seite 8713-8728
1. Verfasser: Yuan, Yu-Jie (VerfasserIn)
Weitere Verfasser: Lai, Yu-Kun, Huang, Yi-Hua, Kobbelt, Leif, Gao, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The recently proposed neural radiance fields (NeRF) use a continuous function formulated as a multi-layer perceptron (MLP) to model the appearance and geometry of a 3D scene. This enables realistic synthesis of novel views, even for scenes with view dependent appearance. Many follow-up works have since extended NeRFs in different ways. However, a fundamental restriction of the method remains that it requires a large number of images captured from densely placed viewpoints for high-quality synthesis and the quality of the results quickly degrades when the number of captured views is insufficient. To address this problem, we propose a novel NeRF-based framework capable of high-quality view synthesis using only a sparse set of RGB-D images, which can be easily captured using cameras and LiDAR sensors on current consumer devices. First, a geometric proxy of the scene is reconstructed from the captured RGB-D images. Renderings of the reconstructed scene along with precise camera parameters can then be used to pre-train a network. Finally, the network is fine-tuned with a small number of real captured images. We further introduce a patch discriminator to supervise the network under novel views during fine-tuning, as well as a 3D color prior to improve synthesis quality. We demonstrate that our method can generate arbitrary novel views of a 3D scene from as few as 6 RGB-D images. Extensive experiments show the improvements of our method compared with the existing NeRF-based methods, including approaches that also aim to reduce the number of input images
Beschreibung:Date Completed 06.06.2023
Date Revised 06.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3232502