Ultra-Small High-Entropy Alloy Nanoparticles : Efficient Nanozyme for Enhancing Tumor Photothermal Therapy
© 2023 Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 23 vom: 30. Juni, Seite e2302335 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2023
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article high-entropy alloy nanozymes metal-ligand cross-linking strategies photothermal therapy tumor therapy ultra-small high-entropy alloy Alloys Hydrogen Peroxide BBX060AN9V |
Résumé: | © 2023 Wiley-VCH GmbH. High-entropy alloys nanoparticles (HEANPs) are receiving extensive attention due to their broad compositional tunability and unlimited potential in bioapplication. However, developing new methods to prepare ultra-small high-entropy alloy nanoparticles (US-HEANPs) faces severe challenges owing to their intrinsic thermodynamic instability. Furthermore, there are few reports on studying the effect of HEANPs in tumor therapy. Herein, the fabricated PtPdRuRhIr US-HEANPs act as bifunctional nanoplatforms for the highly efficient treatment of tumors. The US-HEANPs are engineered by the universal metal-ligand cross-linking strategy. This simple and scalable strategy is based on the aldol condensation of organometallics to form the target US-HEANPs. The synthesized US-HEANPs exhibit excellent peroxidase-like (POD-like) activity and can catalyze the endogenous hydrogen peroxide to produce highly toxic hydroxyl radicals. Furthermore, the US-HEANPs possess a high photothermal conversion effect for converting 808 nm near-infrared light into heat energy. In vivo and in vitro experiments demonstrated that under the synergistic effect of POD-like activity and photothermal action, the US-HEANPs can effectively ablate cancer cells and treat tumors. It is believed that this work not only provides a new perspective for the fabrication of HEANPs, but also opens the high-entropy nanozymes research direction and their biomedical application |
---|---|
Description: | Date Completed 09.06.2023 Date Revised 09.06.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202302335 |