|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM353994693 |
003 |
DE-627 |
005 |
20250304123425.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202208289
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1179.xml
|
035 |
|
|
|a (DE-627)NLM353994693
|
035 |
|
|
|a (NLM)36893768
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Yinlin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Anion-Incorporated Mg-Ion Solvation Modulation Enables Fast Magnesium Storage Kinetics of Conversion-Type Cathode Materials
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.05.2023
|
500 |
|
|
|a Date Revised 11.05.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Rechargeable magnesium batteries (RMB) have emerged as one of the most promising alternatives to lithium-ion batteries due to the prominent advantages of magnesium metal anodes. Nevertheless, their application is hindered by sluggish Mg-ion storage kinetics in cathodes, although various structural modifications of cathode materials have been performed. Herein, an electrolyte design using an anion-incorporated Mg-ion solvation structure is developed to promote the Mg-ion storage reactions of conversion-type cathode materials. The addition of the trifluoromethanesulfonate anion (OTf- ) in the ether-based Mg-ion electrolyte modulates the solvation structure of Mg2+ from [Mg(DME)3 ]2+ to [Mg(DME)2.5 OTf]+ (DME = dimethoxy ethane), which facilitates Mg-ion desolvation and thus significantly expedites the charge transfer of the cathode material. As a result, the as-prepared CuSe cathode material on copper current collector exhibits a considerable increase in magnesium storage capacity from 61% (228 mAh g-1 ) to 95% (357 mAh g-1 ) of the theoretical capacity at 0.1 A g-1 and a more than twofold capacity increase at a high current density of 1.0 A g-1 . This work provides an efficient strategy via electrolyte modulation to achieve high-rate conversion-type cathode materials for RMBs. The incorporation of the trifluoromethanesulfonate anion in the Mg-ion solvation structure of the borate-based Mg-ion electrolyte enables the fast magnesium storage kinetics of the conversion-type cathode materials. The as-prepared copper selenide cathode achieved a more than twofold capacity increase at a high rate and the highest reversible capacities compared to those of the previously reported metal selenide cathodes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anion modulation
|
650 |
|
4 |
|a cathode materials
|
650 |
|
4 |
|a copper selenide
|
650 |
|
4 |
|a rechargeable magnesium batteries
|
650 |
|
4 |
|a solvation structure
|
700 |
1 |
|
|a Wang, Yujia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miao, Yingchun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Xiangyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Xiaodong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 19 vom: 24. Mai, Seite e2208289
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:19
|g day:24
|g month:05
|g pages:e2208289
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202208289
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 19
|b 24
|c 05
|h e2208289
|