An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19

© 2020 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 3 vom: 23., Seite 477-494
1. Verfasser: Pustokhin, Denis A (VerfasserIn)
Weitere Verfasser: Pustokhina, Irina V, Dinh, Phuoc Nguyen, Phan, Son Van, Nguyen, Gia Nhu, Joshi, Gyanendra Prasad, K, Shankar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article COVID-19 Chest-X-Ray deep learning feature extraction machine learning
LEADER 01000caa a22002652c 4500
001 NLM353253308
003 DE-627
005 20250304110603.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1849057  |2 doi 
028 5 2 |a pubmed25n1177.xml 
035 |a (DE-627)NLM353253308 
035 |a (NLM)36819076 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pustokhin, Denis A  |e verfasserin  |4 aut 
245 1 3 |a An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.02.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In recent days, COVID-19 pandemic has affected several people's lives globally and necessitates a massive number of screening tests to detect the existence of the coronavirus. At the same time, the rise of deep learning (DL) concepts helps to effectively develop a COVID-19 diagnosis model to attain maximum detection rate with minimum computation time. This paper presents a new Residual Network (ResNet) based Class Attention Layer with Bidirectional LSTM called RCAL-BiLSTM for COVID-19 Diagnosis. The proposed RCAL-BiLSTM model involves a series of processes namely bilateral filtering (BF) based preprocessing, RCAL-BiLSTM based feature extraction, and softmax (SM) based classification. Once the BF technique produces the preprocessed image, RCAL-BiLSTM based feature extraction process takes place using three modules, namely ResNet based feature extraction, CAL, and Bi-LSTM modules. Finally, the SM layer is applied to categorize the feature vectors into corresponding feature maps. The experimental validation of the presented RCAL-BiLSTM model is tested against Chest-X-Ray dataset and the results are determined under several aspects. The experimental outcome pointed out the superior nature of the RCAL-BiLSTM model by attaining maximum sensitivity of 93.28%, specificity of 94.61%, precision of 94.90%, accuracy of 94.88%, F-score of 93.10% and kappa value of 91.40% 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Chest-X-Ray 
650 4 |a deep learning 
650 4 |a feature extraction 
650 4 |a machine learning 
700 1 |a Pustokhina, Irina V  |e verfasserin  |4 aut 
700 1 |a Dinh, Phuoc Nguyen  |e verfasserin  |4 aut 
700 1 |a Phan, Son Van  |e verfasserin  |4 aut 
700 1 |a Nguyen, Gia Nhu  |e verfasserin  |4 aut 
700 1 |a Joshi, Gyanendra Prasad  |e verfasserin  |4 aut 
700 1 |a K, Shankar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 3 vom: 23., Seite 477-494  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:3  |g day:23  |g pages:477-494 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1849057  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 3  |b 23  |h 477-494