|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM353248479 |
003 |
DE-627 |
005 |
20231226055550.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.chemmater.2c03283
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1177.xml
|
035 |
|
|
|a (DE-627)NLM353248479
|
035 |
|
|
|a (NLM)36818593
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Crovetto, Andrea
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Is Cu3-x P a Semiconductor, a Metal, or a Semimetal?
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.02.2023
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Published by American Chemical Society.
|
520 |
|
|
|a Despite the recent surge in interest in Cu3-x P for catalysis, batteries, and plasmonics, the electronic nature of Cu3-x P remains unclear. Some studies have shown evidence of semiconducting behavior, whereas others have argued that Cu3-x P is a metallic compound. Here, we attempt to resolve this dilemma on the basis of combinatorial thin-film experiments, electronic structure calculations, and semiclassical Boltzmann transport theory. We find strong evidence that stoichiometric, defect-free Cu3P is an intrinsic semimetal, i.e., a material with a small overlap between the valence and the conduction band. On the other hand, experimentally realizable Cu3-x P films are always p-type semimetals natively doped by copper vacancies regardless of x. It is not implausible that Cu3-x P samples with very small characteristic sizes (such as small nanoparticles) are semiconductors due to quantum confinement effects that result in the opening of a band gap. We observe high hole mobilities (276 cm2/(V s)) in Cu3-x P films at low temperatures, pointing to low ionized impurity scattering rates in spite of a high doping density. We report an optical effect equivalent to the Burstein-Moss shift, and we assign an infrared absorption peak to bulk interband transitions rather than to a surface plasmon resonance. From a materials processing perspective, this study demonstrates the suitability of reactive sputter deposition for detailed high-throughput studies of emerging metal phosphides
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Unold, Thomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zakutayev, Andriy
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemistry of materials : a publication of the American Chemical Society
|d 1998
|g 35(2023), 3 vom: 14. Feb., Seite 1259-1272
|w (DE-627)NLM098194763
|x 0897-4756
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:3
|g day:14
|g month:02
|g pages:1259-1272
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.chemmater.2c03283
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 3
|b 14
|c 02
|h 1259-1272
|