Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells

A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 9 vom: 07. März, Seite 3225-3234
1. Verfasser: Downs, Bradley M (VerfasserIn)
Weitere Verfasser: Hoang, Tra-My, Cope, Leslie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Circulating Tumor DNA Proto-Oncogene Proteins B-raf EC 2.7.11.1 DNA 9007-49-2
LEADER 01000naa a22002652 4500
001 NLM353182427
003 DE-627
005 20231226055424.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c02919  |2 doi 
028 5 2 |a pubmed24n1177.xml 
035 |a (DE-627)NLM353182427 
035 |a (NLM)36811956 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Downs, Bradley M  |e verfasserin  |4 aut 
245 1 0 |a Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.03.2023 
500 |a Date Revised 12.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered flowing plasma, removing the need to extract the plasma from the body. This technology has provided the first opportunity to investigate whether microfluidic flow cell design can affect the capture of ctDNA in unaltered plasma. With inspiration from microfluidic mixer flow cells designed to capture circulating tumor cells and exosomes, we constructed four microfluidic mixer flow cells. Next, we investigated the effects of these flow cell designs and the flow rate on the rate of captured spiked-in BRAF T1799A (BRAFMut) ctDNA in unaltered flowing plasma using surface-immobilized dCas9. Once the optimal mass transfer rate of ctDNA, identified by the optimal ctDNA capture rate, was determined, we investigated whether the design of the microfluidic device, flow rate, flow time, and the number of spiked-in mutant DNA copies affected the rate of capture by the dCas9 capture system. We found that size modifications to the flow channel had no effect on the flow rate required to achieve the optimal capture rate of ctDNA. However, decreasing the size of the capture chamber decreased the flow rate required to achieve the optimal capture rate. Finally, we showed that, at the optimal capture rate, different microfluidic designs using different flow rates could capture DNA copies at a similar rate over time. In this study, the optimal capture rate of ctDNA in unaltered plasma was identified by adjusting the flow rate in each of the passive microfluidic mixer flow cells. However, further validation and optimization of the dCas9 capture system are required before it is ready to be used clinically 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Circulating Tumor DNA  |2 NLM 
650 7 |a Proto-Oncogene Proteins B-raf  |2 NLM 
650 7 |a EC 2.7.11.1  |2 NLM 
650 7 |a DNA  |2 NLM 
650 7 |a 9007-49-2  |2 NLM 
700 1 |a Hoang, Tra-My  |e verfasserin  |4 aut 
700 1 |a Cope, Leslie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 39(2023), 9 vom: 07. März, Seite 3225-3234  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:39  |g year:2023  |g number:9  |g day:07  |g month:03  |g pages:3225-3234 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c02919  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 39  |j 2023  |e 9  |b 07  |c 03  |h 3225-3234