Flexible Azo-Polyimide-Based Smart Surface with Photoregulatable Surface Micropatterns : Toward Rewritable Information Storage and Wrinkle-Free Device Fabrication

Stimulus-sensitive materials are of great fascination in surface and interface science owing to their dynamically tunable surface properties and/or morphologies. Herein, we have synthesized an azobenzene-containing polyimide (azo-PI) with enhanced chain flexibility for the fabrication of photosensit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 7 vom: 21. Feb., Seite 2787-2796
1. Verfasser: Yuan, Liang (VerfasserIn)
Weitere Verfasser: Chen, Jian, Li, Yuxin, Luo, Guangzeng, Gao, Zhilu, Zhou, Chunhua, Li, Hui, Xu, Peiming, Zong, Chuanyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Stimulus-sensitive materials are of great fascination in surface and interface science owing to their dynamically tunable surface properties and/or morphologies. Herein, we have synthesized an azobenzene-containing polyimide (azo-PI) with enhanced chain flexibility for the fabrication of photosensitive surface patterns on a film/substrate wrinkle system or wrinkle-free devices. The phototriggered cis-trans isomerization kinetics of azobenzene groups in the novel azo-PI with various chain structures were systematically investigated. On the basis of the characteristics of stress relaxation that azobenzene reversible cis-trans isomerization induces in the wrinkled azo-PI film/substrate system, a variety of rewritable visual surface patterns with high resolution and a long legibility time (>30 days) could be easily constructed via visible-light irradiation, enabling the wrinkled azo-PI surfaces to be used as rewritable information storage media. Meanwhile, because of the visible-light irradiation strategy, these photoresponsive surfaces could find potential application in the fabrication of wrinkle-free flexible devices. This study not only sheds light on the influence of the azo-polymer chain structure on its photoresponsive behavior but also provides a versatile strategy for realizing tailor-made smart surface patterns on multilayer functional devices
Beschreibung:Date Completed 22.02.2023
Date Revised 22.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c03278