A Reconfigurable Optoelectronic Synaptic Transistor with Stable Zr-CsPbI3 Nanocrystals for Visuomorphic Computing
© 2023 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 12 vom: 31. März, Seite e2208497 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2023
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article artificial retinas in-sensor computing perovskite nanocrystals phototransistor memory reconfigurable electronics |
| Zusammenfassung: | © 2023 Wiley-VCH GmbH. Reconfigurable phototransistor memory attracts considerable attention for adaptive visuomorphic computing, with highly efficient sensing, memory, and processing functions integrated onto a single device. However, developing reconfigurable phototransistor memory remains a challenge due to the lack of an all-optically controlled transition between short-term plasticity (STP) and long-term plasticity (LTP). Herein, an air-stable Zr-CsPbI3 perovskite nanocrystal (PNC)-based phototransistor memory is designed, which is capable of broadband photoresponses. Benefitting from the different electron capture ability of Zr-CsPbI3 PNCs to 650 and 405 nm light, an artificial synapse and non-volatile memory can be created on-demand and quickly reconfigured within a single device for specific purposes. Owing to the optically reconfigurable and wavelength-aware operation between STP and LTP modes, the integrated blue feature extraction and target recognition can be demonstrated in a homogeneous neuromorphic vision sensor array. This work suggests a new way in developing perovskite optoelectronic transistors for highly efficient in-sensor computing |
|---|---|
| Beschreibung: | Date Completed 23.03.2023 Date Revised 23.03.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202208497 |