Understanding local plant extinctions before it is too late : bridging evolutionary genomics with global ecology
© 2023 The Author. New Phytologist © 2023 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 237(2023), 6 vom: 05. März, Seite 2005-2011 |
---|---|
1. Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. climate change environmental niche models extinction genetic diversity genomic offset mehr... |
Zusammenfassung: | © 2023 The Author. New Phytologist © 2023 New Phytologist Foundation. Understanding evolutionary genomic and population processes within a species range is key to anticipating the extinction of plant species before it is too late. However, most models of biodiversity risk under global change do not account for the genetic variation and local adaptation of different populations. Population diversity is critical to understanding extinction because different populations may be more or less susceptible to global change and, if lost, would reduce the total diversity within a species. Two new modeling frameworks advance our understanding of extinction from a population and evolutionary angle: Rapid climate change-driven disruptions in population adaptation are predicted from associations between genomes and local climates. Furthermore, losses of population diversity from global land-use transformations are estimated by scaling relationships of species' genomic diversity with habitat area. Overall, these global eco-evolutionary methods advance the predictability - and possibly the preventability - of the ongoing extinction of plant species |
---|---|
Beschreibung: | Date Completed 22.02.2023 Date Revised 09.07.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.18718 |